
TRS-eo®_MODEL 1/111

DEBUG

~TRS-BD

Catalog
Number
26-2000

TM

SOFTWARE

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK M A DIVISION OF TANDY· CORP.

TRS-80 Debug© 1980, 1981 Tandy Corporation. All rights reserved.
Debug Manual© 1981 Tandy Corporation. All rights reserved.

Reproduction or use without express written permission from Tandy
Corporation, of any portion of this manual is prohibited. While rea
sonable efforts have been taken in the preparation of this manual to
assure its accuracy, Tandy Corporation assumes no lillbility resulting
from any errors or omissions in this manual, or from the use of the
information obtained herein.

Please refer to the Software license on the back of this manual for lim
itations on use and reproduction of this Software package.

Important Note to
Model 1/111 Level I

Users of TAPE DEBUG
(Catalog # 26-2000)

The following commands and options described in the manual for TAPE DEBUG are not
available in the Level I BASIC:

1 . The I and C single step commands.

2. The ,bbbb (breakpoint) option of the J command.

3. The T (entry point address) and N (name) options of the W (write a system tape) command

These options and commands are in the Level II and Model Ill BASIC revisions only.

Thank-You'

1tad1el I(
MA DIVISION OF TANDY CORPORATION

8759133

Introduction
DEBUG is an easy-to-use monitor for writing and debugging Z-80 machine
language programs.

With DEBUG, you can:

• Display blocks of memory and the Z-80 registers in two different ways.
• Modify individual Z-80 registers or memory locations or enter an entire

machine-language program.
• Jump to a program and begin execution.
• Insert breakpoints in your programs.
• Single-step execution of programs.
• Write programs or data to a tape.
• Load programs or data into memory from a tape.

DEBUG uses the memory area from 4200H to 39FFH and can be used only
on programs in the user area from 4A00H to the end of memory.

You can use DEBUG with any Model I or Model Ill Computer System.

Note to Model I Customers with an Expansion Interface: You cannot use DEBUG
when you have the Expansion Interface on. Use the Power Supply for a power source.

Table of Contents
1 / Loading DEBUG

Level I BASIC 1
Level II BASIC 2

2 I DEBUG Commands 3

3 I Sample Session 7

Appendices

Appendix A/ Summary of DEBUG Commands 9
Appendix B/ DEBUG Memory Map 10
Appendix C/ Half-Screen Sample Display 11
Appendix D/ Model I Subroutines . 12

1 / Loading Debug
The procedures you should use for loading DEBUG depend on whether you are using
Level I, Level II, or Model III BASIC.

Level I BASIC
Follow the power-up sequence for a ROM-based system described in your Model I or
Model Ill Operation and Basic Language Reference Manual.

After power-up, the Computer will display

READY >
When the tape is rewound in the recorder and the volume is set correctly, press the
recorder's PLAY button and type CLOAD (ENTER). Blinking asterisks will appear in
the upper right of the screen to tell you that the tape is loading. If the asterisks do not
appear, consult your computer's Owner's Manual.

After loading, control will jump directly into DEBUG. The DEBUG half-screen
display should appear and the machine will now accept DEBUG commands.

Making a backup of DEBUG

After you have loaded DEBUG, it's a good idea to make a backup tape or two in case
the original becomes worn out or damaged.

1.) Prepare a blank tape for recording. Make sure that it is past the leader, if it has one.
Press the PLAY and RECORD buttons together (put the recorder in "Record" mode) .

2.) To record, enter the following sequence exactly and ignore the machine's responses
as you go:

wa 1 FE (ENTER) l'.!93F (ENTER)

DEBUG will now make a system tape of itself. When the recorder stops, you should
confirm that DEBUG is on the tape by going through the LOAD DEBUG sequence
with this tape.

Level II or Model III BASIC
Follow the power-up sequence for a ROM-based system described in your Model I or
Model III Operation and Basic Language Reference Manual. (If you have a disk
system and want to use this program, hold the (BREAK) key and press the RESET
button.)

The Model III system starts a little differently from Model I. When your Model III
prompts with CASS?, press: (]J. Both models load the same now.

1. The Computer will prompt you with the question: ME MD RY S I Z E?. For now, just
press (ENTER).

2. Type SYSTEM (ENTER). The computer will prompt with *? Type DEBUG (ENTER).
Rewind the DEBUG tape and press the recorder's PLAY button (be sure the volume
level is set properly for your system) . One non-blinking and one blinking asterisk in
the upper right of the display show that loading is in progress .

3. After 30 seconds or so, the recorder should stop and another *? should appear (if
not, see your computer's Owner's Manual.) Press Cl) (ENTER) to start the program.

The DEBUG half-screen display should appear and the machine will now accept
DEBUG commands.

Making a Backup of DEBUG

After you have loaded DEBUG, it's a good idea to make a backup tape or two just in
case the original becomes worn out or damaged.

Note: If you are using a TRS-8@ Model Ill (Level II only) and wish to make your backup at
/5(JJ(JJ baud,first type the following exactly , ignoring the machine' s responses as you go
(otherwise a 5@(JJ baud tape will be made):

M4211 (SPACEBAR)01 (ENTER) (ENTER)

1.) Prepare a blank tape for recording. Make sure it is past the leader if it has one.
Press the PLAY and RECORD buttons together (put recorder in "Record" mode) .

2.) To record, enter the following sequence exactly and ignore the machine ' s responses
as you go:

Wt'.1332 (ENTER) t'.193F (ENTER) t'.1909 (ENTER) DEBUG (ENTER)

DEBUG will now make a system tape of itself. When the recorder stops, you should
confirm that DEBUG is on the tape by going through the LOAD DEBUG sequence
with this tape. (If you have a Model III , you can simply press (ENTER) in response to
CASS? , since the baud rate is already set.)

2

2 I DEBUG Commands
DEBUG responds immediately when you press a single key command; there's no need
to press (ENTER). If a command needs more data , such as an address, the computer will
prompt with a request for what's needed.

D (Display Memory Contents)

Press~ to display a block of memory. DEBUG will prompt with:

ADDRESS=

You should type in the hexadecimal address of the beginning byte of the block of
memory you wish to see. Press (SPACEBAR) to enter the memory address. If you make a
mistake in the address, just key in the correct address also and press (SPACEBAR).
DEBUG will look only at the last four characters typed . Example: To display memory
beginning at 4020H, type

D ADDRESS= l!020 (SPACEBAR)

The display will be either half- or full -screen , depending on the format currently
specified (see next two commands).

X (Half-Screen Display Mode)

Press 00 to put the Display in the half-screen format.

A 128-byte block of memory will be displayed, starting with the next lower address
which is an even multiple of 16. The next line on the display starting with PC is a list
of the 16 bytes to be found beginning at the address specified by the PC register.

The bottom two lines of the display are the Z-80 registers and their contents .

This is the display mode DEBUG is in when you load it. Appendix C shows a typical
half-screen display.

S (Full-Screen Display)

Press (]J to put the display in the full -screen mode. A 256-byte block of memory will
be displayed, starting with the next lower address which is an even multiple of 256.
This display fills the screen , so commands entered in this mode will overlay the bottom
line of display.

; (Increment Display Address)

Press CD to increment the displayed address by 16 in the half-screen mode or 256 in
the full -screen mode.

3

- (Decrement Display Address)

Press Q to decrement the displayed address by 16 in the half-screen mode or 256 in
the full-screen mode .

M (Modify Memory)

Press 00 to change the contents of a memory location or to enter a machine-language
program. DEBUG will respond with the prompt:

ADDRESS=

You should type in the hexadecimal address of the memory location you wish to
modify. As with the D command, press (SPACEBAR) to enter the address.

The present contents of the memory location you specified will be displayed below the
AF at the lower left of the screen. Type in the value you wish to change to.

Press (SPACEBAR) to enter the change and increment to the next memory location.

Press (SPACEBAR) with no entry to advance to the next memory location without any
change.

Press (ENTER) instead of (SPACEBAR) to make a change and decrement to the previous
memory location.

Press (ENTER) with no entry to terminate the modify command and return to DEBUG.

Examples:

To change memory location 7000H to the value 3BH, type

M ADDRESS= 7000 (SPACEBAR) 3B (SPACEBAR) (ENTER)

To change memory location 65ABH and the following two bytes to 00H, type

M ADDRESS= G5AB (SPACEBAR) 00 (ENTER) 00 (ENTER) 00 (ENTER) (ENTER)

R (Change Register Contents)

To change the contents of a Z-80 register pair, type:

Raa,bbbb (SPACEBAR)

where "aa" is the name of a register pair (AF, BC, DE, HL, AF', BC', DE', HL' ,IX,
IV, SP, PC) and "bbbb" is the new register contents. Iffewer than four digits are
typed before pressing (SPACEBAR), leading zeros are assumed.

Example: To change the DE' register to 43H, type

RDE' , 43 (SPACEBAR)

4

J (Jump to a Program)

Press QJ to begin execution of a machine-language program , setting optional
breakpoint. DEBUG will respond with the prompt: ADDRESS=

Type in the address(es) in one of three formats:

ADDRESS= aaaa,bbbb (ENTER) ADDRESS= aaaa (ENTER)
ADDRESS= ,bbbb (ENTER)

where aaaa is the address you wish to jump to and bbbb is the address where you want.
a breakpoint inserted. If aaaa is omitted, the displayed PC will be used .

When a breakpoint is set, the contents of the specified address are saved and a
hexadecimal F7 (RST 3QlH) is put there instead. When execution reaches this
location, control is returned to DEBUG and the saved value is restored . You can then
examine registers or memory at this point in the program's flow and verify that your
program is doing what you intended.

Note: Breakpoints must be set at the beginning of multi-byte Z-8{!) instructions to operate
properly . Also, breakpoints cannot be set in ROM addresses.

I (Single Step)

Press CI) to execute a single Z-80 instruction . The instruction in the memory location
pointed to by PC will be executed. The PC is incremented , the display is updated , and
control returns to DEBUG.

The I command will not advance past a call or jump to a ROM address .

This function is especially useful in conjunction with breakpoints to debug a small
critical part of a program too long to single-step through in its entirety.

C (Single Step)

If the instruction at the memory location is a call and you wish to complete the entire
call/return sequence, press (I). The call is executed and control returns to DEBUG
when the subroutine returns . Otherwise, this command is like I.

The C command will step through a called sequence , but not a jump to a ROM
address.

U (Update)

Press OD to cause the display to be updated continuously.

This function will be of use if you have interrupt driven devices attached to your
TRS-80, or for looking at the Model III real time clock , address 4040H.

Press any key to exit this mode.

5

T (Load a System Tape)

Press CD to begin immediately loading a system tape into memory. Upon completion,
the first two bytes displayed in the upper left corner will be the program's entry point.

Note for Model III (Level II only) users: Make sure the baud switch (location 4211 H) is in
agreement with the tape being loaded:

baud switch = (JJ(JJ for 5(/)(JJ baud tapes
baud switch = (J)J for 15(])(]) baud tapes

Use the M command to make this change.

Pressing (BREAK) will cancel the load on Model III, but not on Model I. Pressing the
RESET button will cancel the load on both computers.

W (Write a System Tape)

Press 00 to write a system tape. DEBUG will prompt with:

S = Key in the four digit hexadecimal address of the first byte of the block you wish
written, followed by (ENTER).

E = Key in the address of the last byte of the block, followed by (ENTER).

T = Key in the entry point address of the program, followed by (ENTER).

N = Key in the name (up to six alpha-numeric characters, the first of which should be
a letter) you wish the program to be called, followed by (ENTER). This interchange is
displayed on a single line. After writing the tape, DEBUG will clear this line.

If you wish to cancel the command, press (ENTER) with no address for S, E, or T.
While entering the name, use (BREAK) to cancel. You cannot cancel while a tape is
being written; you must wait until it is done.

Q (Quit)

Press CID to exit DEBUG entirely and return to the READY state.

6

3 / Sample Session
You can follow these simple instructions to do the sample session, but a knowledge of
Z-80 assembly language and machine language will be necessary to write your own
programs.

Below is a realistic section of code that will read keyboard input and accept only a
valid number. The number is converted from ASCII into binary and summed into a
location in memory.

This program terminates by returning to DEBUG (entry point: 4909H); this is an easy
way to end programs to be used under DEBUG.

Sample Program (Level II only)
Address Object Label OP Operands Comment

ORG 7000H ; ENTER PROGRAM AT 7000H
7000 213070 START LD HL,7030 iPOINT HL TD SUM
7003 CD4800 GET CALL $KBWAIT ; GET CHARACTER
7008 FE3A CP 3AH ; ABOl.JE NUMBERS?
7008 F20370 JP PDS,GET ; IF YES, GET ANOTHER
7008 FE30 CP 30H ; BELOW NUMBERS?
700D FA0370 JP NEG,GET ; IF YES, GET ANOTHER
7010 DG30 SUB A,30H ; CONt.JERT ASCII TD NUMBER
7012 BG ADD A, (HL) ' ; ADD SUM
7013 77 LD (HU ,A ; STORE IN SUM
7014 C30848 JP 4808H ; DEBUG ENTRY

$KBWAIT is a ROM subroutine (entry point 0049H) that waits for a key to be
pressed, then returns with its ASCII value in the A register. After you have
familiarized yourself with the program and understand what it should do, have
DEBUG display memory in half-screen mode beginning at 7000H.

Enter the program using the M command. (If you need help, just enter the following
where I means press (SPACEBAR):

M7000/21/30/70/CD/48/00/FE/3A/F2/03/70/FE/30/FA/
0 3 / 7 0 / D G / 3 0 / 8 G / 7 7 / C 3 I 0 8 / 4 8 /(ENTER).) When you have finished

entering the program, verify that everything is where it should be by comparing it with
the half-screen display sample in Appendix C. Remember, you are concerned only
with the contents of 7000H to 7016H .

Now, use the J command to jump to 7000. Press (ENTER). The machine is in
$KBWAIT waiting for a key to be pressed.

Press (A) and notice that nothing happens, because the A is not a number. The
program is back in $KBWAIT waiting for another key to be pressed.

7

Press (]J and notice that the DEBUG blinking square is back. Also, notice that the
value in memory location 7030H is different. The 3 is a valid number so it was
converted from ASCII and added to memory location 7030H, and control returned to
DEBUG.

Now use the R command to change HL to 5757, and PC to 7000. Press CD and
note the changes in HL and PC. Press (I) to do the call to $KB WAIT. The machine is
now waiting for a key to be pressed.

Press C[) and notice the changes in PC and AF. Press CD to do the compare and
notice that the sign bit (bit 1) in the F register is set (a negative number) because B is
above the numbers in ASCII.

Press CD to do the jump back to the call. Press (I) to do the call to $KBWAIT. Press
W to satisfy $KBWAIT and then use CD to step all the way through, noting changes
in the F register as the compares are done. The jumps will not be taken and the
converted number will be added to SUM.

When the PC shows 7014 and you are ready to do the return to DEBUG, press CTI
only. If you press CD, you will continue single-stepping into DEBUG.

Breakpoints are of little use with a program this short; therefore, let's assume this is
part of a much longer program that you do not wish to single-step through, but want
only to see the A register before and after the subtraction.

Use the J command to jump to 7000 with a breakpoint at 7012H.

Press CID to satisfy $KBWAIT. Notice that the PC is at 7012 ready to do the
subtraction, and note the value in A.

Press CD to do the subtraction. Note the new value in A. Press CD to continue at the
address in PC.

Much longer sections of code could have been before or after this breakpoint and
checking this subtraction would have been just as easy.

Appendix A / Summary of
DEBUG Commands

Increment display address
Decrement display address

C Single-Step through single call/return sequence
D Display memory contents

D ADDRESS=_£'.! 9 B 3 (=sp=A=c=EB~A=R)
I Single-Step execution of program
J Jump to program witli optional breakpoint

J ADDRESS= 7000,705A (ENTER)
M Modify memory

M ADDRESS= 7200 (SPACEBAR) 53 (ENTERl(ENTERl
Q Return to BASIC READY state
R Chang~ register contents

RHL ,6302 (SPACEBAR)
S Full-Screen display mode
T Load a system tape
U Update display continuously

Press any key to cancel
W Write a system tape

S = starting byte address
E = ending byte address
T = entry point address
N = name of program

X Half-Screen display mode

9

Appendix B / Memory Map
While Running Under DEBUG

0000H

SYSTEM

4331H

4332H

DEBUG

493FH

/ 4940H

USER
MEMORY

4K memory ends 4FFFH
16K memory ends 7FFFH
32K memory ends BFFFH
48K memory ends FFFFH

10

•
DEBUG
Entry Point
4909H

Appendix C / Half-Screen
Sample Display

~
7000 2130 70CD 4900 FE3A F203 70FE 30FA 0370
7010 D630 8877 C309 119511 31135 3637 3839 FIIB3
7020 B5E8 E3F4 8F6D IIA77 8868 5555 5555 FFFF
7030 0000 0000 0055 llDD3 A5A5 5A90 0FD3 FFFF
7040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7080 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7070 FFFF FFFF FFFF FFFF FFFF 0000 0000 0000

,0,w,, !Tll5G789,,
••• ,.mJwffUUUU ••
• • • • • UM I • .z
•• I •• It •••• f •' • •

I ••• t • f • • f •• f •• •

•••••••••••• • •••

••• •• •• • ••• f •• t t

PC F3 AF C3 15 30 C3 00 40 C3 00 110 E1 E9 C3 12 30:::::

AF' BC' DE' HL' rn

C3112 00115 ll2E9 ll8A9 FFFF FFFF C3EE 1100F 11015 _ FD-FF 1128A

1. Memory address of the first byte of a 16 byte row

2. Hexadecimal memory contents

3. ASCII translation of 16 byte row, a period(.) indicates a non-displayable
character

4. The 16 bytes to be found beginning at the address in PC

5. Z-80 registers and their contents

11

Appendix D / Model I Subroutines
This appendix lists subroutines which are a part of the Model I' s Read Only Memory
(ROM). You can access these subroutines with DEBUG.

The Model III ROM subroutines are listed in the Technical Information Section of the
Model III Owner's Manual.

Model I Level I Subroutines
Here are the Model I Level I BASIC subroutines arranged in alphabetical order.

DISPLAY BYTE
KEYBOARD SCAN
LOAD FROM CASSETTE
RETURN TO BASIC READY
RETURN TO DEBUG
SA VE MEMORY TO CASSETTE
TURN ON CASSETTE

DISPLAY BYTE AT CURSOR
RST 10H

This subroutine displays a character at the current cursor.

Entry Conditions:
A = ASCII Character

Exit Conditions:
DE and IY are altered

Sample Programming:
LD

reg.
RST

12

At (HL) iPut character in A

10H

KEYBOARD SCAN
0B40H

This subroutine scans the keyboard for a character. The character is displayed at the
current cursor.

Entry Conditions:
none

Exit Conditions:
A = ASCII Character
Z = 1 if no key is pressed

Sample Programming:
WAIT CALL

JR
0B40H
Z ,WA IT

LOAD MEMORY FROM CASSETTE
0EF4H

,scan f,erboard
,A=character if
Hall throu9'h

Tums on Cassette Recorder and searches for header; then reads in a block of data and
turns Cassette Recorder off.

Entry Conditions:
none

Exit Conditions:
HL = address of last byte read + 1
Z = 0 if checksum error
Z = 1 if no error

Sample Programming:

CALL 0EF4H

RETURN TO BASIC "READY" STA TE
01C9H

; read tape

This is the entry-point for BASIC. JUMP (do not CALL) to the address 01C9H.

Entry Conditions:
none

Sample Programming:

JP 01C8H ; return to READY

13

RETURN TO DEBUG
4909H

Return control to DEBUG monitor with a jump (not a call) to the address 4909H.

Entry Conditions:
none

Sample Programming:

JP

SA VE MEMORY TO CASSETTE
0F4BH

4808H ; return to DEBUG

Write a block of memory to the Cassette recorder. The Cassette is turned off before
return.

Entry Conditions:
HL = starting byte address
DE = last byte address + 1

Exit Conditions:
none

Sample Programming:
CALL
LD
LD
CALL

TURN ON CASSETTE
0FE9H

Turn on Cassette drive motor.

Entry Conditions:
none

Exit Conditions:
none

Sample Programming:
See SAVE MEMORY TO CASSETTE

14

0FE8H
HL,START
DE , LAST 1
0F4BH

iTurn on cassette
istart address
iEnd address +1
ioutPut and turn
,off cassette r1ioto r

Model I Level II Subroutines
Here are the Model I Level II BASIC subroutines listed alphabetically .

DEFINE DRIVE
DISPLAY BYTE
INPUT FROM CASSETTE
KEYBOARD SCAN
OUTPUT TO CASSETTE
OUTPUT TO LINE PRINTER
RETURN TO BASIC "READY"
RETURN TO DEBUG

DEFINE DRIVE
0212H

This routine will specify which drive the Cassette input/output routines will use.

Entry Conditions:
A = ()) for onboard Cassette
A = 1 for external Cassette

Exit Conditions:
none

Sample Programming:
See OUTPUT TO CASSETTE

DISPLAY BYTE
0033H

See $VDCHAR in Model III section.

15

INPUT FROM CASSETTE
0235H

Input a byte from Cassette . Before you use this routine to input data, you must turn on
Cassette motor and find the leader and sync byte (use a call to 0296H to accomplish
this) . The CALL to 0235H must be often enough to keep up with 500 baud . You
must turn off the Cassette motor when you are done with input (use a call to 01F8H).

Entry Conditions:
none

Exit Conditions:
A = byte from Cassette

Sample Programming:

Set up loop to
collect data and /
check for end of /
data

LD
CALL
CALL

CALL
LD

CALL

KEYBOARD SCAN
002BH

See $KBCHAR in Model III section

16

A,0
0212H
028GH

0235H
(HU ,A

01FBH

ionboard cassette
idefine dril.Je
iturn on 111otor and
find leader

iinPut byte
icollect data

iturn off cassette
Ill O t Or

OUTPUT TO CASSETTE
0264H

Output byte to Cassette recorder.
In order to read back in what you write with this routine, you must have turned on the
Cassette motor and written the leader and sync byte (use a call to 0287H which has no
entry or exit conditions) just prior to calling 0264H. You must also turn off the
Cassette motor after you have output the last byte (use a call to 01F8H) . Be sure to
call 0264H often enough to keep up with 500 baud.

Entry Conditions:
A= byte to output

Exit Conditions:
none

Sample Programming:

Set up loop to

LD
CALL
CALL

put characters in A L D
and check for last CA LL
character.

CALL

OUTPUT TO LINE PRINTER

A,0

0212H
0287H

A, (HL)

02GLIH

01FBH

ionboard cassette
idefine dri,.ie
iturn on and 1A1rite
leader

jget next char,
ioutPut char,

iTurn off 1,1oto r

The Printer is "memory mapped" on the Model I. This means that to output a byte on
the printer, you simply load the byte into memory position 37E8H. To find out if the
printer is busy, check if bit seven of memory location 37E8H is a '' 1 ' '.

Sample Programming:

PTR

LD

LD
BIT
JP

LD

HL,37EBH

D, (HL)
7,D
NZ,PTR

(HL) ,A

iHL=PrinterrnaPPed
location
; load status 1A1O rd
iPrinter bus}'?
iif bit 7=1 loof, again
iif fall through then
Printer is read}' to
output byte

;output byte

17

RETURN TO BASIC "READY"
1A19H

Return to Basic "READY" with a jump (not a call) to 1Al9H.

Entry Conditions:
none

Sample Programming:
JP

RETURN TO DEBUG
4909H

1A19H

Return to DEBUG with a jump (not a call) to 4909H.

Entry Conditions:
none

Sample Programming:
JP L!909H

18

i9otoREADY

; return to DEBUG

IMPORT ANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
" AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability . loss or damage caused or
alleged to be caused directly or indirectly by computer equipment or pro
grams sold by Radio Shack, including but not limited to any interruption of
service , loss of business or anticipatory profits or consequential damages
resulting from the use or operation of such computer or computer programs .
NOTE : Good data processing procedure dictates that the user test the

program , run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a: non-exclusive, paid up license
to use on CUSTOMER'S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/ or disk) or stored (ROM) is transferred to the CUSTOMER, but not title
to the software.

B . In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the software allows a back
up copy to be made) , and shall include Radio Shack 's copyright notice on
all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft
ware (modified or not. in whole or in part), provided CUSTOMER has
purch,ased one copy of the software for each one resold. The provisions of
this software License (paragraphs A , B , and C) shall also be applicable to
third parties purchasing such software from CUSTOMER.

RADIO SHACK MA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA : BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAO
RYOALMERE, N.S.W. 2116

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL OE NANINNE
5140 NAN IN NE

U. K.

BILSTON ROAO WEONESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A.

	Debug (1981)(Tandy).pdf
	d00a.pdf
	d00b.pdf
	d00c.pdf
	d00d.pdf
	d00e.pdf
	d00f.pdf
	d01.pdf
	d02.pdf
	d03.pdf
	d04.pdf
	d05.pdf
	d06.pdf
	d07.pdf
	d08.pdf
	d09.pdf
	d10.pdf
	d11.pdf
	d12.pdf
	d13.pdf
	d14.pdf
	d15.pdf
	d16.pdf
	d17.pdf
	d18.pdf
	d98.pdf
	debug 25.pdf
	d99.pdf

